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a b s t r a c t

In this study, a novel vibration isolator is developed. The developed isolator possesses

the characteristics of high-static–low-dynamic stiffness (HSLDS) and can act passively

or semi-actively. The HSLDS property of the isolator is obtained by connecting a

mechanical spring, in parallel with a magnetic spring that is constructed by a pair of

whose stiffness exhibits a hardening behavior. The stiffness of the magnetic spring can

be positive or negative, depending on the polarity of the current to the electromagnets.

A passive HSLDS isolator is obtained when the electromagnet current is zero. In the

stiffness characterization study, the analytical model for each of the springs is

established and the tuning parameters are identified. Using the stiffness models, the

design optimization issues are investigated. In the experimental study, the effectiveness

of the isolator for vibration isolation is tested. The analytical natural frequencies of the

isolator are validated experimentally. The relationships between the displacement

transmissibility and the exciting frequency are measured both under the passive mode

and under the semi-active mode. The on-line tuning capability of the isolator is

investigated.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Excessive vibration can cause serious damage to structures and machines. Vibration isolation is an effective way to
reduce vibration [1]. The methods of vibration isolation can be classified as: passive, active, and semi-active. A simple
passive vibration isolator consists of a spring and damper. The design of the isolator spring and the isolator damper
requires a trade-off. The dynamic stiffness of an isolator spring should be as low as possible in order to increase the region
of vibration isolation. However, if a linear spring is used, low stiffness isolator causes unacceptably large static deflection.
A desirable vibration isolator should possess high-static–low-dynamic stiffness (HSLDS) so that it can support a large load
statically while having low dynamic stiffness. A HSLDS spring is a nonlinear spring. When an isolator has zero or near zero
dynamic stiffness, it is referred to as a quasi-zero-stiffness (QZS) isolator.

There are a number of ways to obtain the HSLDS property. A detailed review of recent advances in nonlinear passive
vibration isolators can be found in [2]. A common method to design a passive HSLDS isolator is to combine a positive
stiffness spring with a negative stiffness spring. For example, in [3,4], a QZS isolator was obtained by connecting a vertical
coil spring and two oblique coil springs. The oblique springs provide negative stiffness in the vertical direction which
counteracts the positive stiffness of the vertical spring. Another way is to utilize structural buckling phenomena. In [5], the
beam subject to an axial load was combined with a positive stiffness spring to achieve a QZS isolator. Axially loaded rods
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were used in [6] to improve vehicle driver vibration isolation. The studies conducted in [7,8] showed that a highly
deformed pinched loop possesses a softening stiffness. It is well known that two permanent magnets can form a positive or
negative stiffness spring, depending on their polarity arrangement. The HSLDS isolator proposed in [9] was made of two
linear coil springs and three permanent magnets arranged in an attracting configuration.

In general passive isolators are incapable of coping with varying conditions such as changes in the exciting frequency or
in system parameters. Active vibration isolators can achieve superior performance through a feedback system. However,
they are not cost-effective. Semi-active vibration isolators, in which the system properties can be adjusted in real time,
combine the advantages of both passive and active isolators. Semi-active vibration isolators preserve the reliability of
passive isolators even in the event of power loss; they also possess the versatility and adaptability of active isolators. In a
semi-active isolator, the isolation is achieved by passive elements whose properties can be changed on-line to maintain an
optimal performance [10,11]. One common way to adjust the isolator’s properties is to change its damping value.
The damping value can be changed using a variable-orifice valve to alter the resistance to the flow of a hydraulic damper
[12]. Most noticeably, electro-rheological or magneto-rheological dampers feature a broad bandwidth modulation of the
damping characteristics through variations in the electrical or magnetic field [13–17]. Stiffness is another property that can
be designed to be adjustable on-line. Several ways of obtaining variable stiffness devices are discussed in [18]. The tunable
vibration isolator proposed in [19] achieves the stiffness variation through a separation of a compound leaf spring by a wax
actuator.

Compared to mechanical or hydraulic devices, electromagnetic devices possess some unique advantages, such as
cleanliness, faster response, no mechanical contact, easy integration with control system, and compactness. Therefore,
the use of electromagnetic techniques in semi-active vibration control continues to receive considerable attention [20–26].
In the past, we have developed several electromagnetic apparatuses for vibration suppression. In [27], a damper based on
the eddy-current principle was used to construct a tunable vibration absorber. In [28], a tunable electromagnetic vibration
absorber was proposed. In [29], an active electromagnetic actuator was utilized to implement time-delay control.

In this study, we propose a tunable electromagnetic vibration isolator. The isolator comprises a mechanical spring and a
magnetic spring. The developed isolator possesses HSLDS characteristics. This paper differs from the previous studies in
three aspects. First, the mechanical spring used is a structural beam. In practice, structural members are frequently used as
springs. However, most structural members exhibit a hardening effect which makes it more difficult to achieve the HSLDS
property. Second, in contrast to the apparatus proposed in [9], the passive negative stiffness spring is obtained through
interaction between the permanent magnet and the steel cores of the electromagnets. Third, the isolator can act either
passively or semi-actively. Under the semi-active mode, the isolator’s stiffness can be instantly decreased or increased
without any moving parts.

The aim of the paper is twofold: to develop the analytical models for the proposed isolator and study the design
optimization issues, and to test the performance of the isolator and demonstrate the effectiveness of the on-line tuning
feature. The rest of the paper is organized as follows: In Section 2, the proposed tunable electromagnetic isolator is
introduced. In Section 3, the stiffness characterization and optimum design issues are addressed. In Section 4, the
experimental results are presented. In Section 5, the study conclusions are drawn.

2. Electromagnetic vibration isolator

Fig. 1 shows a schematic of the proposed electromagnetic vibration isolator. A steel beam (1) is used to support a
permanent magnet (PM) (2). The permanent magnet acts as an isolated mass and is referred to as mass denoted as m.
The mass-beam assembly is placed between a pair of electromagnets (EMs) (3). The tension of the beam can be adjusted by
the screws (4). Each EM is constructed by winding Gauge 22 copper wire around a low-carbon steel bolt with a diameter of
13.0 mm. The outer diameter and length of the coil are 46.6 and 88.0 mm, respectively. The number of the turns is about
3565. As shown in Fig. 2, two springs are involved in the isolator. The beam acts a mechanical spring denoted as kb.
The interaction between the mass and the EMs results in a magnetic spring denoted as kpe. The electromagnetic spring kpe

consists of two parts: kpc and kpf where kpc is due to the interaction between the mass and the EM cores and kpf the
interaction between the mass and the flux generated by the EMs. It should be noted that the static stiffness depends only
on the mechanical spring, while the dynamic stiffness comes from the combined effect of the mechanical spring and the
electromagnetic spring. In order to assess the isolator performance and optimize its design, an analytical model for each of
the aforementioned springs is needed. In what follows, first the analytical model for each of the springs is established. Then
the analytical models for the combined systems are obtained and the optimization issue is discussed.

3. Stiffness characterization and design optimization

3.1. The mechanical springs

An analytical model for the stiffness of the beam is not readily available because the beam is subjected to an initial
tension and has a large deformation. Thus the stiffness of the mechanical spring was determined experimentally. With the
beam firmly clamped in place, a force was applied to the mass. The displacement of the mass was measured by a dial gauge



ARTICLE IN PRESS

Fig. 1. Schematic of the tunable HSLDS isolator.

Fig. 2. Two springs involved in the tunable isolator.

N. Zhou, K. Liu / Journal of Sound and Vibration 329 (2010) 1254–12731256
and the corresponding force was measured by a force gauge. For each of the applied forces, the experiments were repeated
five times to ensure the result consistency. Two types of beams were considered. The first one was a steel ruler with
length�width� thickness of 32.0�15.0�0.5 mm. The second one was a steel saw blade with length�width� thickness
of 28.0�12.0�0.6 mm. The tension applied to the second beam was higher than that applied to the first beam. Fig. 3
shows the averaged experimental results of the restoring force vs. the mass displacement. In the figure, circles represent
the measured values for the first beam and boxes represent the measured values for the second beam.

A third-order polynomial is used to fit the data by the least-squares method. The best-fit force–displacement
relationship for the first beam is given by

Fb ¼ 1:0460� 103zþ3:1861� 107z3; (1)

where z denotes the displacement of the mass. The solid line in Fig. 3 represents the best-fit curve. The best-fit
force–displacement relationship for the second beam is given by

Fb ¼ 1:0503� 103zþ3:1538� 106z3: (2)

The dotted line in Fig. 3 represents the best-fit curve. Differentiating Eq. (1) yields the stiffness for the first beam

kb ¼ 1:0460� 103
þ9:5583� 107z2: (3)

Differentiating Eq. (2) yields the stiffness for the second beam

kb ¼ 1:0503� 103
þ9:4614� 106z2: (4)
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Fig. 3. The restoring force of the beam: the measured values (circles) and the best-fit curve (solid line) for the first beam; the measured values (boxes)

and the best-fit curve (dotted line) for the second beam.
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Fig. 4. Stiffness of the mechanical springs: the first beam (solid line) and the second beam (dotted line).
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Fig. 4 shows the stiffness vs. the displacement of the mass for both of the mechanical springs. It is noted that the nonlinearity of
the first beam is much stronger than that of the second beam. Hereinafter, the first beam is referred to as the mechanical spring
with strong nonlinearity while the second beam is referred to as the mechanical spring with weak nonlinearity.

3.2. The permanent magnet spring

When the mass is placed between the EMs that are not energized, the interaction between the mass and the steel cores
constitutes a permanent magnet spring. The mass block is formed by two neodymium magnets enclosed in an aluminum
casing. The block dimension is l�w� h=25.4�25.4�29.0 mm. Its magnetization is 786.23 kA m�1. The analytical
relationship for the attracting force between a permanent magnet block and a ferromagnetic cylinder can be found in
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references such as [30]. However, some key parameters in the analytical relationship still need to be determined
experimentally. Plus, it is desired to express this relationship as an explicit function of the distance between the permanent
magnet and the core. Therefore, in this study, an experimental approach was taken. Using a force gauge and a dial gauge,
force values between the mass and the un-energized EM were measured for different gap distances. The dots in Fig. 5 show
the average results of five measurements. Coulomb’s law states that the attracting or repelling force between two magnets
is inversely proportional to the square of the distance between them [9]. Inspired by Coulomb’s law, an analytical model
for Fpc is assumed to be of the form

Fpc ¼
a1

ðdþa2Þ
4
; (5)

where d is the distance between the mass and the steel core, and a1 and a2 are constants to be determined. A nonlinear
optimization was carried out to find the best values for a1 and a2 such that the sum of the squared errors between the
measured values and the values computed by Eq. (5) is minimized. The solid line in Fig. 5 shows the best-fit curve obtained
with the optimum values of a1*=7.7114�10�6 N m4 and a2*=1.6919�10�2 m.

Now consider the case in which the mass is placed between the two steel cores as shown in Fig. 2. If the mass moves to
the right by a distance z, the attracting force between the mass and the right core becomes

Fpc1 ¼
a1

ðd1þa2Þ
4
; (6)

where

d1 ¼
D� h

2
� z; (7)

and the attracting force between the mass and the left core becomes

Fpc2 ¼
a1

ðd2þa2Þ
4
; (8)

where

d2 ¼
D� h

2
þz: (9)

The net force acting on the mass is given as

DFpc ¼ Fpc2 � Fpc1 ¼
a1

ðq1þzÞ4
�

a1

ðq1 � zÞ4
¼ � 8a1q1

zðq2
1þz2Þ

ðq2
1 � z2Þ

4
; (10)

where q1 ¼ ðD� hÞ=2þa2. Fig. 6 compares the experimental results and the results computed by Eq. (10) for a gap distance
of D=70 mm. Good agreement between the experimental results and the analytical results is obtained. The stiffness of the
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Fig. 5. Interacting force between the mass and the core; measured values (dots); and the best-fit curve (solid line).
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Fig. 6. Net force acting on the mass between the two steel cores with D=70 mm: the measured values (dots) and the values computed by Eq. (10)
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permanent magnetic spring can be obtained by differentiating Eq. (10) with respect to z

kpc ¼ � 8a1q1
5z4þ10q2

1z2þq4
1

ðq2
1 � z2Þ

5
: (11)

3.3. The electromagnetic spring

When the mass is placed between a pair of the EMs, the force acting on the mass depends on several factors such as the
flux density produced by the EMs, the magnetization and position of the mass, and the material and size of the steel cores.
To determine this force, first, consider the force due to interaction of the mass and the magnetic flux generated by one EM.
According to the magnetism theory [31], the axial force acting on a permanent magnet block due to the axial magnetic flux
generated by a coil can be computed by

Fpf ¼M

Z
S1

Bd dS�

Z
S2

Bdþh dS

� �
; (12)

where M is the magnetization of the permanent magnet, S1 and S2 are the area of the right side and left side of the
permanent magnet block, respectively (see Fig. 2), Bd and Bd + h are the flux density generated by the EM at S1 and S2,
respectively. Although an analytical method to compute the axial flux density from a coil is available, some key parameters
such as the magnetization of the permanent magnet and the permeability of the core still have to be determined
experimentally [28].

In this study, the flux density produced by the EM was determined experimentally. To this end, the axial position away
from the EM end face was divided in a step of 5.0 mm. The radial position from the axis of the EM was divided in a step of
2.5 mm. A current was applied to the EM. The flux density at each axial position and radial position was measured using a
DC magnetometer (DCM, AlphaLab Inc). The results are shown in Fig. 7. It is noted that contrary to the analytical prediction
[31], the flux density does not peak along the center line. Equation (12) can be approximated as

Fpf ¼M
XN

i¼1

ðBi
d � Bi

dþhÞrSi; (13)

where Bi
d is the measured flux density at the axial distance d away from the EM and the radial distance ri away from the

center line of the EM, Bi
dþh is the measured flux density at the axial distance d+h away from the EM and the radial distance

ri away from the center line of the EM, rSi ¼ pðr2
iþ1 � r2

i Þ and ri + 1�ri=2.5 mm. To simplify the computation, the square-
shaped face of the permanent magnet block is approximated as a circular one with a diameter of 28.67 mm. The dots in
Fig. 8 represent the results computed by Eq. (13). It can be seen that an increase in the current results in an increase of the
force magnitude and an increase in the distance causes a rapid decrease in the force magnitude. A reasonable analytical
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Fig. 7. Measured axial magnetic flux density of the EM for the coil currents varying from 0.2 to 2.0 A in a step of 0.2 A.
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model may assume the following form:

Fpf ¼ signðiÞð1� e�b3 jijÞ
b1

ðdþb2Þ
4
; (14)

where signðiÞ ¼ 1 if i>0, signðiÞ ¼ � 1 if io0, b1, b2, and b3 are constants to be determined. A nonlinear optimization was
conducted to find the optimum values for b1, b2, and b3 such that the sum of the squared errors between the values
computed by Eq. (13) and the values computed by Eq. (14) is minimized. The solid lines in Fig. 8 are computed using
Eq. (14) with the optimum values of b1*=4.9192�10�5 N m4, b2*=2.9855�10�2 m, and b3*=1.2109 A�1. It can be seen
that Eq. (14) fits the varying trend of Eq. (13) well. Equation (14) will be used in the following discussion.

Next the interacting force between the mass and the EM is considered. It is tempting to obtain this force by simply
adding Eqs. (5) and (14). However, many studies have shown that the relative permeability of ferromagnetic materials is
sensitive to several factors such as temperature and magnetization [32,33]. For example, when an electromagnet is
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energized, the temperature of its core will rise, which inevitably alters the relative permeability of the core. And when a
permanent magnet is near a ferromagnetic material, the magnetization will lower the relative permeability of the material.
Considering the aforementioned reasons, an experiment was conducted to determine the interacting force between the
mass and the EM. For each gap distance, the currents to the EM were varied from �2.0 to 2.0 A in a step of 0.2 A and the
corresponding forces were measured. The circles in Fig. 9 show the results of five measurements. Let Fpe denote the force
between the mass and the energized EM. This force is caused by the two aforementioned interactions, i.e.:

Fpe ¼ e�a3 jijFpcþsignðiÞð1� e�b3 jijÞ
b1

ðdþb2Þ
4
; (15)

where Fpc is defined by Eq. (5) and, a3, b1, b2, and b3 are constants to be determined. The rationale of using a decaying exponential
function to modify Fpc is based the fact that an increase in the current magnitude will reduce the relative permeability of the EM
core. The b1, b2, and b3 constants need to be re-determined in order to reflect the influence of the PM on the flux density.
A nonlinear minimization problem was solved to determine the constants that best-fit the measured force values in the least-
squares sense. The best estimated constants were found to be a3*=0.19343 A�1, b1*=2.4922�10�4 N m4, b2*=4.5686�10�2 m,
and b3*=0.45038 A�1. The solid lines in Fig. 9 represent the values computed by Eq. (15) with the optimum constants. It can be
seen that Eq. (15) is capable of predicting the varying trends of the measured values.

When the mass placed between the two EMs displaces a distance z as shown in Fig. 2, the net force acting on the mass is
given by

DFpe ¼ Fpeðd2; iÞ � Fpeðd1; iÞ ¼ � 8e�a3jija1q1
zðq2

1þz2Þ

ðq2
1 � z2Þ

4
� 8 signðiÞð1� e�b3 jijÞb1q2

zðq2
2þz2Þ

ðq2
2 � z2Þ

4
; (16)

where d1 and d2 are defined by Eqs. (7) and (9), respectively, and q2 ¼ ðD� hÞ=2þb2. Differentiating Eq. (16) with respect to
z yields the stiffness of the EM spring

kpe ¼ � 8e�a3 jija1q1
5z4þ10q2

1z2þq4
1

ðq2
1 � z2Þ

5
� 8 signðiÞð1� e�b3jijÞb1q2

5z4þ10q2
2z2þq4

2

ðq2
2 � z2Þ

5
: (17)

The above model indicates that the EM spring has two design parameters, namely the gap distance D and the current i.
In the following, it is shown that D can act as an off-line tuning parameter and i as an on-line tuning parameter.

3.4. The passive HSLDS isolator

When the mass-beam assembly is placed between the electromagnets that are not energized, a passive HSLDS isolator
is obtained. The stiffness of the isolator is given by

k¼ kbþkpc; (18)
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where kb is defined by Eq. (3) or Eq. (4) and kpc is defined by Eq. (11). With Eq. (3) and a prescribed D for kpc, Eq. (18) gives
the dynamic stiffness for the isolator with the strong nonlinear mechanical spring. Fig. 10 shows the stiffness values
corresponding to four different gap distances. Compared with the solid line in Fig. 4, the PM spring softens the combined
stiffness. However, the overall trend of the stiffness is still hardening. When the gap distance is too small, the stiffness
around the equilibrium position becomes negative.

With Eq. (4) and a prescribed D for kpc, Eq. (18) defines the dynamic stiffness for the isolator with the weak nonlinear
mechanical spring. Fig. 11 shows the stiffness values corresponding to four different gap distances. In this case, the PM
spring has a significant effect on the combined stiffness. When the gap distance is too small, the stiffness becomes
negative. It is interesting to note that when the gap distance increases, the stiffness curve varies from a concave shape to a
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Fig. 10. Stiffness of the isolator with the strong nonlinear mechanical spring: D=60 mm (solid line); D=65 mm (dashed line); D=70 mm (dotted line);

and D=75 mm (dash-dotted line).
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Fig. 11. Stiffness of the isolator with the weak nonlinear mechanical spring: D=65 mm (solid line); D=70 mm (dashed line); D=75 mm (dotted line);
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convex one. This indicates that there exists an optimum gap distance such that the curve fluctuation around the
equilibrium position can be made as small as possible. A desired region Dzmax can be defined as the maximum
displacement range in which the stiffness satisfies the following condition:

jk� k0jrek0 and k40; (19)

where k0>0 is the stiffness at the equilibrium position and e is a prescribed tolerance. If ko0, Dzmax=0. Fig. 12 shows the
widths of the desired region for four different tolerances. The gap distance corresponding to the peak value is the optimum
gap distance that maximizes the desired region for the given tolerance. Fig. 13 shows the stiffness values of the isolators
with the optimum gap distances. It can be seen that the smaller the tolerance, the smaller the stiffness variation.
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Fig. 12. The width of the desired region for the isolator with the weak nonlinear mechanical spring: e=0.05 (solid line); e=0.10 (dashed line); e=0.15

(dotted line); and e=0.20 (dash-dotted line).
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Other design possibilities exist. For example, consider a nonlinear mechanical spring as given by

kb ¼ kb0þkb1z2; (20)

where kb0 is given and kb1 is to be determined. If a desired stiffness at z=0 is prescribed to be kd
0, then the required gap

distance can be found to be

D¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8a1

kb0 � kd
0

5

s
� 2a2þh: (21)

If the stiffness at z1 is desired to be kd
0 as well, then kb1 is given by

kb1 ¼

kb0 � kd
0 � 8q1

5z4
1þ10q2

1z2
1þq4

1

ðq2
1 � z2

1Þ
5

z2
1

: (22)

Assume that a QZS isolator is to be designed such that kd
0 ¼ 0. If the static stiffness of the mechanical spring is

kb0=1.0503�103 N/m, the required gap distance from Eq. (21) becomes D=66.75 mm. Fig. 14 shows three stiffness curves
with the kb1 values that are determined by specifying z1=5, 10, and 15 mm, respectively. It can be seen that a smaller kb1

value will make the stiffness closer to the QZS state and the larger kb1 value will make the stability region wider.

3.5. The tunable HSLDS isolator

When the electromagnets are energized and the mass-beam assembly is placed between them, the stiffness of the
combined system becomes

k¼ kbþkpe; (23)

where kb is defined by Eq. (3) or (4) and kpe is defined by Eq. (17). Such a set-up provides several design choices. In addition
to the possibilities discussed in the previous section, the current to the electromagnets offers an on-line tuning capability.
This will be explored in the experimental study. This section examines the current effect on the total stiffness. Fig. 15
shows the stiffness of the isolator with the strong nonlinear mechanical spring for four different settings. With a smaller
gap distance, the softening effect of the EM spring is more noticeable. As was true in the passive HSLDS isolator, adding the
EM spring to the system does not alter the hardening trend dominated by the mechanical spring. Shown in Fig. 16, the
tunable isolator with the weak nonlinear mechanical spring offers more interesting variations in the dynamic stiffness.
This isolator is used to investigate how the gap distance and current affect the width of the desired region defined
previously. Fig. 17 shows the relationship of Dzmax vs. D and i if e=0.1.

Several observations can be drawn. When the gap distance is small, an increase of the current will cause a negative
stiffness such that Dzmax=0. When the gap distance is large, the width of the desired region decreases with an increase of
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Fig. 14. Stiffness of the isolator with the optimum gap distance: z1=5 mm, kb1=1.34426�107 N/m3 (solid line); z1=10 mm, kb1=1.7991�107 N/m3

(dashed line); and z1=15 mm, kb1=3.0892�107 N/m3 (dotted line).
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Fig. 16. Stiffness of the isolator with the weak nonlinear beam: D=70 mm and i=0.0 A (solid line); D=70 mm and i=1.5 A (dashed line); D=80 mm and
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the current. This is due to the fact that the larger the current, the smaller the stiffness at z=0 and, the more drastic the
change in the stiffness curve. The Dzmax values peak around D=70 mm. Fig. 18 shows four stiffness curves corresponding to
the optimum gap distances and the currents. It can be seen that by properly choosing the gap distance and the current,
the isolator stiffness can be made nearly constant in a large range.
4. Experimental studies

A laboratory scale apparatus was built in house. Fig. 19 shows a photo of the experimental setup. The apparatus was
firmly fastened to a shaking table that consists of a precision rail (6709K12) and two linear guide carts (SR20TB).
The apparatus base was excited by a shaker (Brüel & Kjær, 4809) through a stinger. A PC computer with a data acquisition
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Fig. 18. Stiffness of the tunable isolator with the weak nonlinear beam: D=71 mm, i=0.05 A, and Dzmax=16.4 mm (solid line); D=70.5 mm, i=0.10 A, and

Dzmax=14.4 mm (dashed line); D=70 mm, i=0.30 A, and Dzmax=10.6 mm (dotted line); and D=75 mm, i=0.50 A, and Dzmax=5.2 mm (dash-dotted line).
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(DAQ) board (dSpace 1104) was used to collect response signals and generate control actions. The dSpace ControlDesk
serves as the interface between Matlab, Simulink, and the DAQ board. Through one digital-to-analog channel (DAC),
the generated base excitation signal was fed to a power amplifier (Brüel & Kjær, 2706) to drive the shaker. Through another
DAC, the generated digital signal was fed to a linear amplifier powered by a DC power supply. The amplifier output was
connected to the electromagnets with the polarity set up such that a positive/negative current created an attracting/
repelling action between the PM and the EMs. A laser position sensor (Wenglor, CP24MHT80) was used to measure the
displacement of the PM or the base. The signal was fed into the computer through an analog-to-digital channel (ADC). In all
the tests, a sampling time of 0.001 s was used and the sampled data were processed with a numerical low-pass filter with a
cut-off frequency of 60 Hz. Only the results conducted using the isolator with the strong nonlinear beam are reported
below. Unless otherwise stated, the results are the average of 10 measurements.

First, the relationship between the natural frequency and the gap distance or the EM current was validated. The mass is
0.17 kg. The stiffness at the equilibrium position is computed by letting z be zero in the established models. With the mass
and the stiffness, the analytical natural frequency can be determined. By tapping the mass gently, the free responses were
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Fig. 19. Photograph of the experimental setup.
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Fig. 20. Free responses of the passive vibration isolator: (a) D=70 mm; (b) D=80 mm; (c) D=90 mm; and (d) D=150 mm.
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measured. Fig. 20 shows four typical responses for the passive vibration isolator. A nonlinear optimization was conducted
to estimate the natural frequency on and damping ratio z. The optimization minimizes the sum of the squared errors
between the measured response and the response defined by the following:

zðtÞ ¼
zð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q e�zont sin on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
tþtan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
z

0
@

1
A; (24)

which is the response of a single degree-of-freedom linear system to an initial displacement z(0).
Fig. 21 shows the relationship between the natural frequency and the gap distance for the passive isolator. It can be

seen that the experimental results agree well with the analytical ones. Both the results validate the trend that a decrease in
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the gap distance lowers the natural frequency. The results also show that when the gap distance becomes large, the natural
frequency becomes less sensitive to the changes in the gap distance. This is expected because the magnitude of kpc is
inversely proportional to D5 as shown by Eq. (11).

The relationship between the damping ratio and the gap distance is interesting. As shown in Fig. 20, with a decrease of
D, the responses decay more rapidly. With respect to Fig. 20, the estimated damping ratios are z=0.150 for D=70 mm,
z=0.032 for D=80 mm, z=0.012 for D=90 mm, and z=0.005 for D=150 mm, respectively. In a linear system with a constant
damping value, the damping ratio varies with the natural frequency according to the relationship: z2 ¼ z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fn1=fn2

p
where zi

is the damping ratio at the natural frequency fni. However, for the present system, the variation of the damping ratio does
not follow such a relationship. This difference may be due to the effect of the eddy current and mutual induction generated
by the moving permanent magnet. Fig. 22 shows the relationship between the natural frequency and the EM current for
the tunable isolator with D=80 mm. Once again, both the results confirm the softening effect caused by the application of
the EM currents. It is worth pointing out that the estimated values for the natural frequency and damping ratio were
amplitude-dependent. A larger amplitude response tends to result in a higher natural frequency and damping ratio. This
indicates that the system behaves nonlinearly.

Second, the displacement transmissibility ratio was investigated. A sinusoidal base motion with a prescribed amplitude
and frequency was generated through the computer and shaker system. The steady-state response of the mass was
measured. The root-mean-square (RMS) value of the 10-s response was computed. The transmissibility ratio was taken as
the ratio of the RMS value of the mass displacement over that of the base displacement. By varying the exciting frequency
in a step of 0.5 Hz, the relationship between the transmissibility ratio and the base exciting frequency was obtained. Fig. 23
compares the transmissibility ratios of the passive isolator for four setups when the base motion amplitude was 1 mm.
With only the mechanical spring or in the absence of the PM spring, the transmissibility ratio increases with an increase of
the exciting frequency up to about 18 Hz. After that, the transmissibility ratio drops drastically. A further increase of the
exciting frequency makes the value of the transmissibility ratio less than one and the vibration isolation occurs. A sudden
jump in the amplitude of the steady-state response is a typical phenomenon in systems with a hardening or softening
nonlinearity [34,35]. In this study, the lowest exciting frequency that causes such a jump phenomenon is referred to as the
jump frequency. With the PM spring, the pattern of the transmissibility ratio curve remains similar but the jump frequency
shifts to the left when the gap distance decreases, which widens the vibration isolation region. It is also noted that with the
PM spring, the transmissibility ratio at the low frequency region increases.

The experiment also revealed other typical behaviors of the nonlinear systems. For example, the jump frequency
depends on the amplitude of the base excitation. When the exciting frequency was slightly above the jump frequency, the
vibration state was very sensitive to external disturbance: an impact to the base would switch a small vibration to a large
vibration. Fig. 24 demonstrates the performance of the tunable isolator with the gap distance of D=78 mm. It is observed
that with an increase of the EM current, the jump frequency decreases, and therefore the isolation region is widened.

The measured transmissibility values deserve some comments. It is noted that the jump-down frequency is greater than
the natural frequency computed using the stiffness at z=0. This phenomenon is expected for a system with a hardening
spring [34,35]. According to [35], for a system with a cubic restoring force, the maximum transmissibility ratio JTJmax is
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given by

JTJmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

4

16z2
� 3a

s
; (25)

where a¼ k3Z2
0=k1 (see [35], for the definitions of the symbols). For a small gap distance such as D=69 or 71 mm, the

maximum transmissibility ratio roughly agrees the value predicted by Eq. (25). However, for a large gap distance or
without the PM spring, the measured JTJmax is smaller than the one given by Eq. (25). This result is expected, because
Eq. (25) is valid only for the systems in which aoam ¼ 16=3z2. For the mass-beam setup, using k1 and k3 given in Eq. (1), it
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is found that a=0.030, a value that is much greater than am. For the system with small damping level such as the solid line
in Fig. 23, Eq. (25) is no longer valid. In this case, a numerical simulation can be used to find the transmissibility ratios. In
[36], it was found that the transmissibility values determined from the numerical simulation followed the general trend of
the measured values.

Third, the on-line tuning capability was explored. The objective is to achieve the best transmissibility ratio for any
exciting frequency within the range of interest by adjusting the EM current. To devise a tuning strategy, refer to Fig. 24.
When subjected to a given harmonic base excitation, a tunable isolator possesses two distinguishing jump frequencies.
When the EM current is zero, the amplitude jump occurs at a higher frequency denoted as f1. When the EM current is
maximum, the amplitude jump occurs at a lower frequency denoted as f2. For the isolator of Fig. 24, f1 is about 15.0 Hz,
while f2 is about 7.0 Hz. When the exciting frequency is less than f2, the dynamic stiffness should be as large as possible to
keep the transmissibility ratio close to one. When the excitation frequency is greater than f1, the EM current should be zero.
When the exciting frequency is between f2 and f1, the dynamic stiffness should be reduced accordingly by varying the EM
current based on the vibration magnitude.

Fig. 25 shows a Simulink model that implements such a tuning strategy. Through DAC_C8, the sinusoidal signal is sent
to the shaker to generate the base motion. The displacement signal of the mass and the acceleration signal of the base are
acquired through ADC_C5 and ADC_C8, respectively. Using 2048 samples, the RMS value and the main frequency of the
displacement signal is computed by an embedded MATLAB function block ‘‘Cal_RMS’’ and by an embedded MATLAB
function block ‘‘Cal_Freq’’, respectively. Using 2048 samples, the main frequency of the acceleration signal is computed by
‘‘Cal_Freq’’ as well. These two frequencies are fed into an embedded MATLAB function block ‘‘Cal_Switch’’ to determine
which of the frequencies is more likely to be the exciting frequency. In general, the frequency determined using the
acceleration signal of the base is more reliable for a high exciting frequency while the frequency determined using the
displacement signal of the mass is more reliable for a low exciting frequency. The determined exciting frequency and
the RMS value are sent to an embedded MATLAB function block ‘‘Cal_TuningSignal’’. If the RMS value exceeds a threshold
value preset by the user, the following actions are taken. When the base excitation frequency is less than f2, the EM voltage
is set to a negative value so that the EM spring acts as a positive spring. When the base excitation frequency is greater than
f1, the EM voltage is zero so that the isolator becomes a passive one. When the exciting frequency is between f2 and f1,
a positive EM voltage is determined based on the RMS value so that the dynamic stiffness is reduced. The determined EM
voltage is sent to the linear amplifier through DAC_C5.

The on-line tuning strategy was tested using a base excitation of the amplitude of 0.5 mm. Fig. 26(a) compares the
results of the four cases. In case one, the EM current was �1.5 A, resulting in an isolator with a high dynamic stiffness.
In case two, the EM current was zero. In case three, the EM current was 1.0 A, resulting in an isolator with a low dynamic
stiffness. In case four, the on-line tuning control was activated and the EM current was adjusted as shown in Fig. 25(b).
It can be seen that the on-line tuning ensures that the isolator maintains the best performance.

The capability of coping with disturbance was investigated as well. Fig. 27 shows a typical result. The test was
conducted using a base excitation with the frequency of 9.5 Hz and the amplitude of 0.5 mm. In the beginning, the tuning
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control set the EM current to be 1.0 A so that the smallest vibration level was established. After 3.0 s, a base disturbance
was induced such that the mass jumped to a large vibration. With the tuning, the EM current was increased so that the
dynamic stiffness was further reduced and the vibration was brought back to the smallest vibration level.

5. Conclusion

An electromagnetic vibration isolator, which can act passively or semi-actively, has been developed. The unique feature
of the developed isolator is the tunability of its high-static–low-dynamic stiffness. A systematical approach has been
devised to develop the stiffness models. The gap distance between the electromagnets has been identified as an off-line
tuning parameter for the passive isolator. With the established models, the relationship between the dynamic stiffness and
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the gap distance has been studied and the design optimization has been addressed. It has been shown that by properly
choosing the gap distance, the isolator can possess some desired properties such as QZS or near-constant stiffness.
The current to the electromagnets has been used as an on-line tuning parameter. The relationship between the dynamic
stiffness and the electromagnet current has been investigated. It has been demonstrated that a proper combination of the
gap distance and the electromagnet current can result in a low and near constant dynamic stiffness. A lab scale apparatus
has been built. An experimental study has been conducted. The isolator’s natural frequencies, determined analytically,
have been validated by the measured values. The displacement transmissibility ratios of the passive isolator for different
gap distances and the tunable isolator for different currents have been measured, respectively. The results have confirmed
the analytical predication that reducing the gap distance or increasing the current widens the isolation region. The on-line
tuning capability of the isolator has been demonstrated. The experimental results have shown that the tuning strategy can
ensure the best performance when the exciting frequency varies or if the external disturbances occur.

A final note is made on the applicability of the proposed apparatus for suppression of a vertical base excitation.
Although the apparatus was tested in a horizontal setup, the major results are applicable when the apparatus is used in a
vertical setup in which the mass is subjected to a gravity force. It should be noted that the electromagnetic spring is
independent of the gravity force. When the mass-beam assembly is installed, the mass sets down to a new equilibrium
position due to a static deflection of the beam. This static deflection is very small as the stiffness of the beam is very high.
Next the electromagnets are installed to ensure their symmetry with respect to the equilibrium position. As long as the
mechanical spring is symmetrical about the new equilibrium position, the apparatus will work as it is used in a horizontal
setup. However, it is expected that the stiffness of the beam will be somewhat asymmetric about the equilibrium position.
This asymmetry makes the dynamic equilibrium position slightly different from the static one. The asymmetry problem
can be minimized by taking two measures. A stiffer beam can be used to further reduce the static deflection. A higher
tension can be applied to the beam to make the stiffness more linear or symmetric.
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